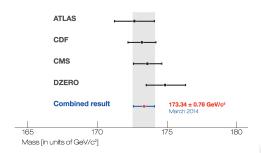


Studies of Single Top Quark Production at the Tevatron

Matteo Cremonesi
on behalf of the CDF & D0 Collaborations

The Top Quark


Heaviest known elementary particle:

• Latest world combination: $173.34 \pm 0.76 \text{ GeV/c}^2$

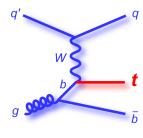
Short lifetime:

- No hadronization, it decays
 - Nearly 100% of the times in a W boson and in a b quark
- Opportunity to study a bare quark

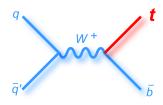
Top quark mass measurements

Single Top Quark Production

Observed by CDF and D0 in 2009

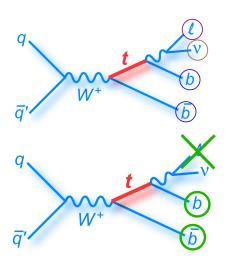

- Direct measurement of the |V_{tb}| CKM matrix element
- Sensitive to new physics

t-channel: $\sigma_t \cong 2 \text{ pb}$; $S/B \cong 0.05$


- Powerful discriminating features
- Both Tevatron and LHC are sensitive to t-channel

s-channel: $\sigma_s \cong 1$ pb; $S/B \cong 0.03$

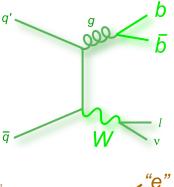
- Less separation with respect to the background
- More difficult at LHC
 - 5 times more signal, 15 times more background

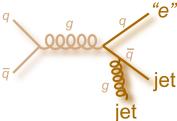


t-channel

s-channel

Event Selection


$\ell \nu b \bar{b}$:


- One high p_T isolated lepton (e,μ)
- Missing transverse energy (₱ T)
- Two or more jets
- At least one b-tag

$\not\! E_T b \bar b$ (CDF only!):

- No isolated leptons (e,μ)
 - Leptons are explicitly vetoed
 - \circ Orthogonal to $\ell
 u b ar b$ sample
- Large *₱_T*:
- Two or more jets
- At least one b-tag
- \Rightarrow It adds 33% of acceptance to the $\ell \nu b \bar{b}$ selection

Signal and Background Model

Electroweak/Top: single top, diboson, and $t\bar{t}$:

- modeled by Monte Carlo (MC)
 - single top: POWHEG (CDF), COMPHEP (D0)
 - \circ $t\bar{t}$, diboson, WH/ZH: PYTHIA
- MC normalized to theoretical cross-section

W+Heavy Flavor:

- modeled by ALPGEN
- normalization from data

Mistags: falsely tagged light quark or gluon jets

mistag probability from data

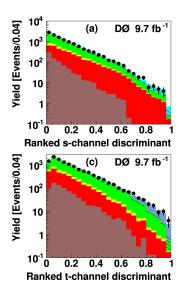
QCD multijet: Data-derived model

CDF $\ell \nu b \bar{b}$ Event Yield

Category	TT + TL	1T+LL
t₹	357 ± 40	560 ± 57
Diboson	58.7 ± 7.8	279 ± 34
Higgs	12.5 ± 1.0	12.0 ± 0.9
Z+jets	31.6 ± 3.5	190 ± 21
QCD	76 ± 31	326 ± 130
W+HF	712 ± 286	2597 ± 1046
W+LF	66 ± 14	1220 ± 175
t-channel	53.4 ± 6.7	265 ± 30
s-channel	116 ± 12	127 ± 12
Total	1484 ± 403	5574 ± 1501
Data	1231	5338

CDF $\ell \nu b \bar{b}$ Event Yield

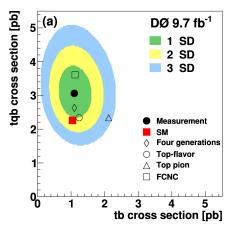
Category	TT + TL	1T+LL
tτ̄	357 ± 40	560 ± 57
Diboson	58.7 ± 7.8	279 ± 34
Higgs	12.5 ± 1.0	12.0 ± 0.9
Z+jets	31.6 ± 3.5	190 ± 21
QCD	76 ± 31	326 ± 130
W+HF	712 ± 286	2597 ± 1046
W+LF	66 ± 14	1220 ± 175
t-channel	53.4 ± 6.7	265 ± 30
<i>s</i> -channel	116 ± 12	127 ± 12
Total	1484 ± 403	5574 ± 1501
Data	1231	5338


CDF $\ell \nu b \bar{b}$ Event Yield

The background uncertainty is larger than the predicted signal, cannot do a simple counting experiment ⇒ Make use of multivariate

techniques

Category	TT+TL	1T+LL
t₹	357 ± 40	560 ± 57
Diboson	58.7 ± 7.8	279 ± 34
Higgs	12.5 ± 1.0	12.0 ± 0.9
$Z+{\sf jets}$	31.6 ± 3.5	190 ± 21
QCD	76 ± 31	326 ± 130
W+HF	712 ± 286	2597 ± 1046
W+LF	66 ± 14	1220 ± 175
t-channel	53.4 ± 6.7	265 ± 30
<i>s</i> -channel	116 ± 12	127 \pm 12
Total	1484 ± 403	5574 ± 1501
Data	1231	5338

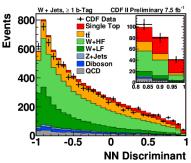

D0 Analysis

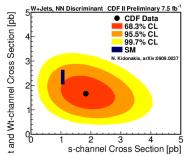
Strategy:

- Full D0 dataset (9.7 fb^{-1})
- Combination of boosted decision trees, Matrix elements and neural networks in a Bayesian neural network
- 2D final discriminant sensitive to both s- and t-channel
- 1D posterior for σ_{s+t} integrating over σ_t , without assuming the SM σ_s/σ_t
- Integrate over σ_t and extract σ_s and viceversa

D0 Analysis

Phys. Lett. B 726, 656 (2013)

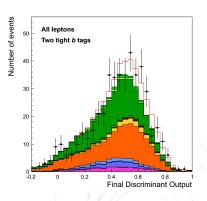

- Cross sections:
 - $\sigma_s = 1.10^{+0.33}_{-0.31}$ (stat+syst) pb
 - $\circ \ \sigma_t = 3.07^{+0.53}_{-0.49} \ (\text{stat+syst}) \ \text{pb}$
 - $\circ \ \sigma_{s+t} = 4.11^{+0.59}_{-0.55} \ (\text{stat+syst}) \ \text{pb}$
- p-values:
 - s-channel: 3.7σ (3.7σ expected)
 first evidence of s-channel
 - \circ *t*-channel: 7.7σ (6.0 σ expected)
- $|V_{tb}| > 0.92$ at 95% C.L.


CDF $l\nu b\bar{b}$ Analysis

Strategy:

- \bullet 7.5 fb⁻¹ of CDF data are analyzed
- 1D MVA discriminant sensitive to s/t-channel used in double/single tag
- 1D posterior obtained for σ_{s+t} assuming the SM σ_s/σ_t

- $\sigma_{s+t} = 3.04^{+0.57}_{-0.53}$ (stat+syst) pb
- $|V_{tb}| = 0.96 \pm 0.09$ (stat+syst) ± 0.05 (th)
- Limit: $|V_{tb}| > 0.78$ at 95% C.L.

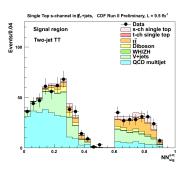


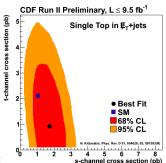
CDF $l\nu b\bar{b}$ s-channel Analysis

Strategy:

- Full CDF dataset (9.5 fb⁻¹)
- 1D MVA discriminant sensitive to s-channel only
- t-channel included as background, constrained to the theoretical prediction
- New CDF HOBIT multivariate tagger is used

- $\sigma_{\rm s} = 1.41^{+0.44}_{-0.42}$ (stat+syst) pb
- *p*-value = **3.8** σ (2.9 σ expected)



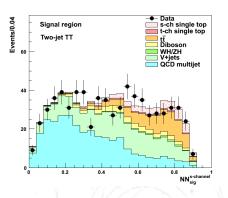

CDF **∉**_Tb**b** Analysis

Strategy:

- Full CDF dataset (9.5 fb⁻¹)
- 1D MVA discriminant sensitive to both s- and t-channel:
 - Combination of two s-/t-channel optimized MVAs
- 1D posterior obtained for σ_{s+t} assuming the SM σ_s/σ_t
- New CDF HOBIT multivariate tagger is used

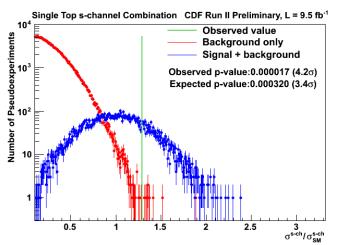
- $\sigma_{s+t} = 3.53^{+1.25}_{-1.16}$ (stat+syst) pb
- $|V_{tb}| > 0.63$ at 95% C.L.

CDF $\not\!\!E_T b \bar b$ s-channel Analysis

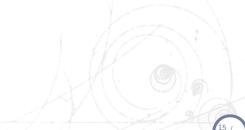

Strategy:

- Full CDF dataset (9.5 fb⁻¹)
- 1D MVA discriminant sensitive to s-channel only
- t-channel included as background, constrained to the theoretical prediction
- New CDF HOBIT multivariate tagger is used

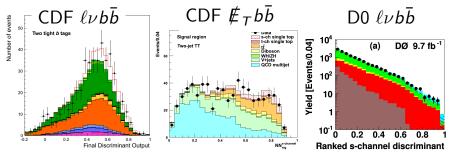
Results:

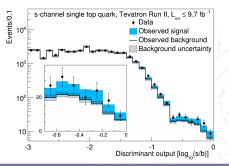

- $\sigma_s = 1.12^{+0.61}_{-0.57}$ (stat+syst) pb
- **1.9** σ (1.8 σ expected)

arXiv:1402.3756

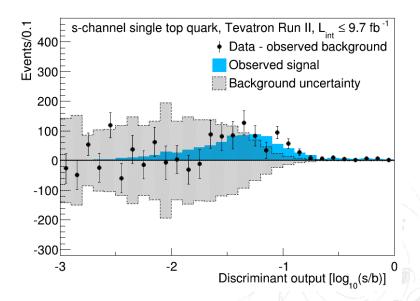

CDF s-channel Combination

$$\sigma_s = 1.36^{+0.37}_{-0.32} \text{ (stat+syst) pb}$$

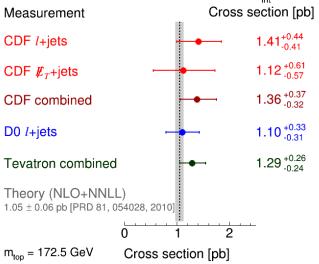



arXiv:1402.3756

Tevatron s-channel Combination

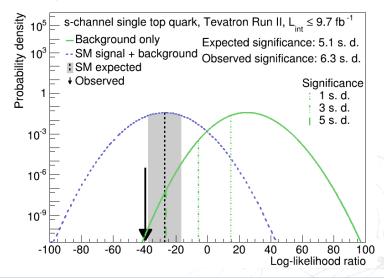


Combination Inputs/Output



Background-subtracted Discriminant

Cross Section Summary


s-channel single top quark, Tevatron Run II, $L_{int} \le 9.7$ fb⁻¹

- Equal contributions from CDF and D0
- Negligible top mass dependence

Tevatron Combined Significance

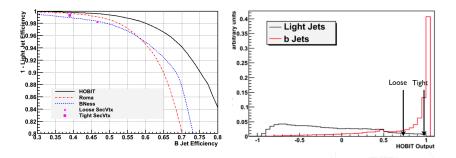
- LHC-style asymptotic approximation log-likelihood ratio
 - Reproduces ensemble-based significance estimate
- Observed p-value: 1.8×10^{-10}

Conclusions

Tevatron single top program is almost complete

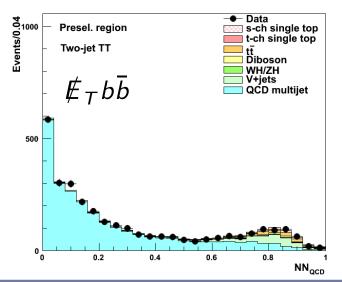
- Single top first observation in 2009
- *t*-channel first observation in 2011
- s-channel first observation in 2014
 - First Tevatron-combined observation of a new process, a unique case in HEP
 - o Submitted to PRL, arXiv:1402.5126

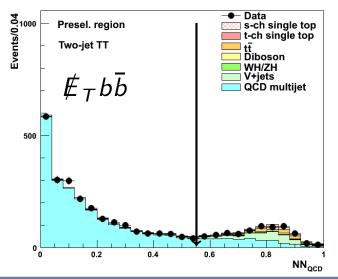
Final Tevatron combination coming soon


• Expected updates on V_{tb} , σ_{s+t} , and s-channel vs t-channel

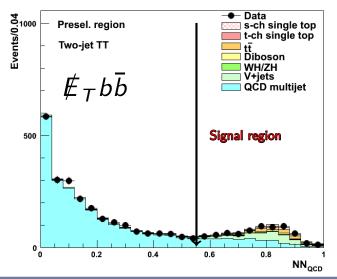
 $^{0}/_{45}$

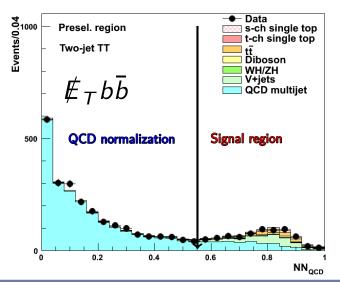
Backup

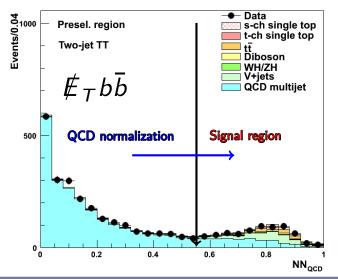

HOBIT


A new b-jet identification algorithm optimized for H o b ar b searches is employed: **HOBIT**

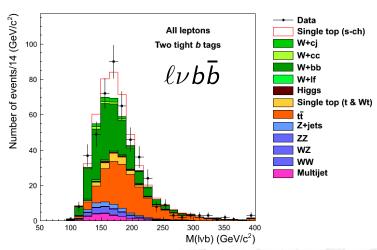
- Incorporates all the features of the previous CDF b-taggers
- ullet Two different HOBIT cuts are used: tight b-tag (T), loose b-tag (L)


In the $\not\!\!E_T b \bar b$ analysis, QCD multijet production is by far the largest background with largest uncertainties


In the $\not\!\!E_T b \bar b$ analysis, QCD multijet production is by far the largest background with largest uncertainties

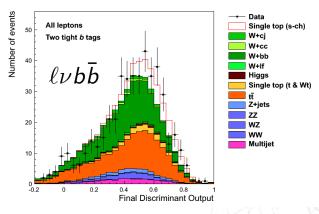

In the $\not\!\!E_T b \bar b$ analysis, QCD multijet production is by far the largest background with largest uncertainties

In the $\not\equiv_T b\bar{b}$ analysis, QCD multijet production is by far the largest background with largest uncertainties


In the $\not\equiv_T b\bar{b}$ analysis, QCD multijet production is by far the largest background with largest uncertainties

Top Quark Reconstruction

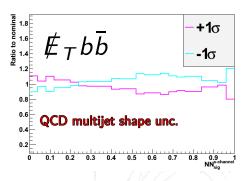
In both the CDF analyses, a neural network algorithm is employed to select the b jet which is originated from top quark.


Single Top s-channel in Lepton+Jets, CDF Run II Preliminary (9.4 fb⁻¹)

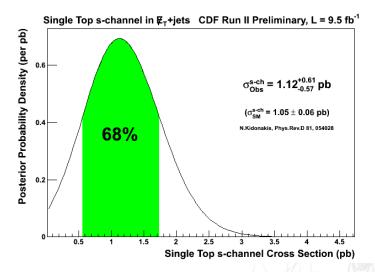
Final Discriminant

- 10-20 kinematic variables are used in the training
- The training is optimized in each analysis subsample

Single Top s-channel in Lepton+Jets, CDF Run II Preliminary (9.4 fb⁻¹)


- Double-tag two-jet sample is the most sensitive
- Data clearly prefer the signal+background hypothesis

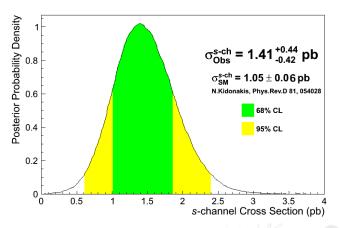
Cross Section Extraction


- *t*-channel single top and *WH*/*ZH* production included as backgrounds, constrained to the theoretical prediction
- Bayesian approach: likelihood fit to the binned final discriminant distribution
- Uniform, non-negative prior for signal cross section
- All the uncertainties on signal and background normalization and shape included

Systematic Uncertainties

- W+jets normalization uncertainty is the dominating one
- The jet energy is corrected separately for quark and gluon jets
 ⇒ two different uncertainties
- A shape uncertainty on the QCD multijet data-driven model is included

$\not\!\!E_T b \bar b$ Bayesian Statistical Analysis

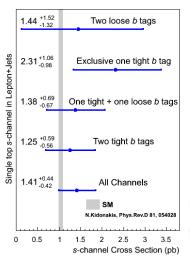


Expected uncertainty: 57%

Observed uncertainty: 53%

$\ell \nu b \bar{b}$ Bayesian Statistical Analysis

Single Top s-channel in Lepton+Jets, CDF Run II Preliminary (9.4 fb⁻¹)

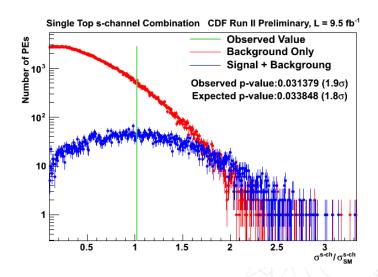


Expected uncertainty: 38%

• Observed uncertainty: 30%

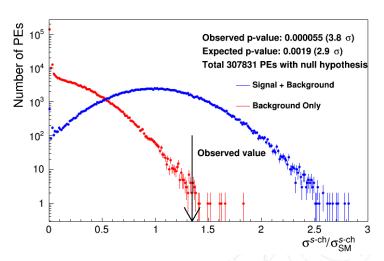
$\ell \nu b \bar{b}$ Consistency check

CDF Run II Preliminary (9.4 fb⁻¹)


Measurements are consistent with each other in each subsample

p-value Calculation

- The probability of observing a signal as large as the observed one or larger from fluctuation of the backgroud (p-value) is estimated
- The p-value is computed generating a large set of pseudoexperiment in signal+background and background-only hypothesis
- The expected p-value is calculated assuming a signal at the SM rate

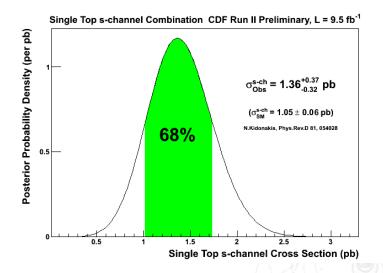

 $^{5}/_{45}$

$\not\!\!E_T b \bar b$ Significance

$\ell \nu b \bar{b}$ Significance

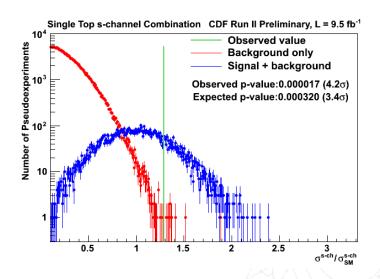
Single Top s-channel in Lepton+Jets, CDF Run II Preliminary (9.4 fb -1)

CDF Combination



CDF Combination Strategy

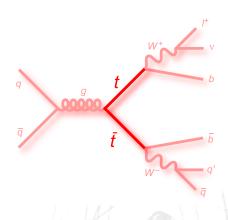
- Bayesian approach considering simultaneously all the subsamples from the $\ell\nu b\bar{b}$ and $\not\!\!E_T b\bar{b}$ analyses
- Use the same approach used in each single analysis to calculate significance
- All the uncertainties and their correlations taken into account


9/45

CDF Combined Bayesian Statistical Analysis

Expected uncertainty: 33%Observed uncertainty: 25%

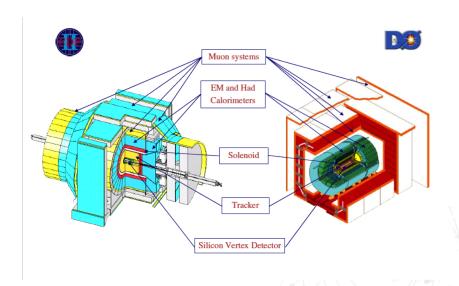
CDF Combined Significance


$t\bar{t}$ Pair Production

Top quark was discovered by CDF and D0 in 1995, in $t\bar{t}$ events

 $\sigma_{t\bar{t}}\cong 7 \text{ pb; } S/B\cong 1$

- The distinctive kinematic properties
- Quite pure sample
- Strong production easier to observe



The Tevatron

- Collider $p\bar{p} \sqrt{s} = 1.96 \text{ TeV}$
- Radius R = 1 km
- Two experiments: CDF and D0
- Run II (2001–2011): $\sim 12 \text{ fb}^{-1} \text{ of } p\bar{p} \text{ collisions,}$ $\sim 10 \text{ fb}^{-1} \text{ recorded per}$ experiment

The CDF and D0 Detectors

Analysis Challenges

Small signal, large background

- \Rightarrow Use a loose set of selection cuts, to preserve signal
- \Rightarrow Require b-tagged jets, to reduce background

Large background uncertainties:

- The main backgrounds are also the ones with the largest uncertainties
- ⇒ Carefully model signal and backgrounds

Poor separation ⇒ Use multivariate techniques

⁴⁵/45